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Abstract: Infectious or inflammatory stress in the rat causes very

typical functional and metabolic alterations. Among the most typical

are elevation in body temperature, plasma copper, insulin, and glucagon

and depression in the concentrations of plasma ketones, free fatty acids

and zinc. These changes occur only with infections or inflammatory

stress and not with noninflammatory stresses such as femoral fracture,

screen restraint or exercise. It appears that the depression in plasma

ketone bodies during infection or inflammation is closely related to the

rise in plasma insulin. During infection imposed on experimentally

induced diabetes, inhibition of plasma ketones is not apparent. In a

similar fashion, infection in hypophysectomized rats causes no elevation

in plasma insulin and no depression in plasma ketones. Discussion

concerning the implications of these observations in the rat and primate

is included.

*1
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The purpose of this review is to summarize metabolic alterations,

specifically those relating to lipid metabolism, which occur when rats

are stressed under controlled conditions with either an infectious or

inflammatory stress. When rats are subjected experimentally to an

inflammatory stress there are common metabolic aberrations which ultimately

lead to a significant loss in body nitrogen. These metabolic responses

generally emerge in a consistent pattern, whether the inflammatory

process is initiated by an infectious microorganism or by a sterile

irritant.

Many of the inflammation-related metabolic alterations observed in

fasted rats differ from the typical metabolic changes seen in fasted control

rats and, therefore, are of interest to those involved with the study of

metabolic events during disease. Data from the rat cannot, of course,

be transferred directly to metabolic events occurring in the septic

human. However, the possible relationships between results discussed in

the rat and those observed in the septic human patient will be discussed

later.

Of all the measured metabolic differences between infected and

uninfected fasting rats, the specific parameters reported here were

chosen because they reflect characteristic and consistent differences

attributable to the presence of infection. These parameters include

rectal temperature, and plasma concentrations of zinc, ketone bodies,

free fatty acids, copper, insulin and glucagon. All of these components

can be defined by rather narrow limits in the normnal fed rat. Plasma

ketone bodies (B-hydroxybutyric acid and acetoacetic acid) are present in

concentrations ranging from 0.5-1.0 umol/ml, free fatty acids from 250-750

WEq/L, insulin ranges from 15-30 IU/ml, glucagon from 250-500 pg/ml and
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zinc and copper from 120-150 pg/ml. In general, fasting for 24 or 48 hrs

causes a lowering of body temperature and marked increases in both plasma

ketone bodies and free fatty acids. Plasma insulin (I) decreases during

fasting, but there is little or no change in plasma glucagon (G); the

combination of these changes depresses the I/G ratio. Fasting causes

only a slight decrease in plasma zinc concentration and essentially no

change in plasma copper. In the reviewed studies, both stressed and

control rats were fasted to accomodate the anorexia which normally

accompanies an experimentally induced acute infection or inflaLmatory

process.

A. Stress

Stress can be defined as the sum of all nonspecific biological

phenomena elicited by adverse external influences. These may include

cellular damage and may be localized or systemic. Stress may be

characterized further as inflammatory or noninflammatory. For the

purposes of this review, inflammatory stresses are characterized as

those which may result in fever, anorexia and cell damage or death. As

examples of inflammatory stress we have chosen two bacterial infections,

gram-positive, Streptococcus pneumoniae and gram-negative, Francisella

tularensis; one viral infection, Venezuelan equine encephalomyelitis;

the administration of Eschericia coli endotoxin; and the induction of a

sterile turpentine abscess. In all studies appropriate controls were

utilized. When experimental rats were given bacterial or viral pathogens,

control groups received equal numbers of heat-killed organisms. Control

groups for rats receiving endotoxin or turpentine received sterile normal

saline. As examples of noninflammatory stress in rats, screen restraint,
2 3

a noninvasive femoral fracture, and swimming exercise were chosen.



Data on noninflammatory stresses have been included to illustrate clearly

that the important metabolic consequences of infection are not necessarily

associated with trauma, which can be noninflammatory. Swimming exercise

has been included as a noninflammatory stress, although, clearly, it

represents a totally different type of stress than screen restraint or

femoral fracture. Severe exercise may be considered as a noninflammatory

stress because, normally, it is not associated with the localized cellular

death observed during the inflammatory process.

B. Effect of inflammatory and noninflammatory stress on body temperature,

plasma zinc, and plasma copper.

All infectious and noninfectious inflammatory processes included in

these studies caused a significant increase in rectal temperature within

24 hrs after initiating the stress (Fig. 1). In general, depending on

the severity of the stress, increases in body temperature were apparent

as early as 6 hrs (endotoxin) or delayed until 24 hrs (viral infection).

Rats subjected to the noninflammatory stresses of screen restraint or

femoral fracture did not become febrile (data not shown), and during a

10-hour swim in thermoneutral water (33-35*C), body temperature dropped

due to the high thermal conductivity of the water.

4-9
As described by Pekarek, Beisel, and their co-workers, one of the

earliest indications of inflammatory stress is the depression in plasma

zinc. The effect of infectious or inflammatory stress on plasma zinc

and plasma copper in rats is shown in Figure 2. The depression in
10

plasma zinc is accompanied by an increase in liver zinc. Most of the

excess hepatic zinc is sequestered in the liver by an acutely induced

zinc binding metallothionein. In like fashion, the elevation of plasma

copper is associated with increased hepatic synthesis and release into

the plasma of copper-binding ceruloplasmin. Rats subjected to a variety
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of noninflammatory stresses demonstrated no change in plasma zinc or

copper. Although a depression in plasma zinc and a rise in plasma

copper are excellent indices of inflammatory stress, it is not clear as

to how, or if, these events might benefit the host.

C. Effect of inflammatory and noninflammatory stress on plasma

ketones, free fatty acids, and albumin.

Inflammatory processes caused a severe inhibition of the ketonemia

typically associated with fasting (Fig. 3) and a depression of concentration

of plasma free fatty acids 11-13 (Fig. 4). In contrast, a noninflammatory

stress such as a femoral fracture caused no decrease in plasma ketone
2

concentration of fasted rats (Fig. 3). The stress of prolonged (3 hrs)

swimming exercise caused an increase in plasma ketone bodies and free

fatty acids in fasted rats (Fig. 5); however, the direction of change

due to fasting as similar in both sedentary and swimming rats. There is

no indication that the exercise-stress disrupted the mechanism which

caused the infection-induced fasting ketonemia. 14

Decreased ketonemia during inflammatory stress in fasting rats

is accompanied by significant depressions in ketone body concentrations

in brain and liver (Fig. 6). Moreover, as shown by Wannemacher et al
15

and in Figure 7, when livers from infected rats were perfused with long-

chain fatty acids, the ability of the liver to produce ketone bodies

was diminished, even if the free fatty acid concentration in the perfusate

was maintained at or above that found in normal plasma.

For many years it has been assumed that the brain utilizes glucose

almost exclusively and adapts to the use of ketone bodies only after

16
severe fasting. The use of ketones by the brain has been shown by

17 18Owen et al. Recent work by Hawkins and Biebuyek suggests that
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ketones are selectively used by individual brain regions which require

no period of adaptation.

The decrease in plasma free fatty acid concentration during infection

is probably related to the concomitant decrease in plasma albumin, its

carrier protein. This can be deduced from data which show that the free

fatty acid to albumin ratio remains relatively constant when plasma from

fasted-infected rats is compared to fasted controls, as shown in Figure 8.15

When a noninflammatory stress such as an aseptic femoral fracture or

screen restraint, was imposed on rats, there was a decrease in plasma

2
free fatty acids (Fig. 9). In contrast, however, the stress of swimming

elevated free fatty acids (Fig. 5).14

The data presented in Figure 7 suggest that the decrease in ketone

body production in the livers of infected rats is most probably due to

a change in the manner in which the liver handles the flux of long-chain

free fatty acids. Data obtained by Pace et al19 indicated that in

livers from infected rats there was a shift toward the synthesis of

triglycerides rather than production of ketone bodies.

D. Effect of inflammatory and noninflammatory stress on the endocrine

system.

Several investigations 20 - 24 have noted a rise in plasma insulin

during infection. Figure 10 shows the effect of a variety of stresses

on plasma insulin concentration. Inflammatory stresses cause insulin

values in the fasted rat to increase to, or near, the concentration seen

in fed rats. In studies of noninflammatory stress, the insulin concentration

remains as low as in normal fasted rats. There seems to be a close

association between high plasma insulin values and low ketone bodies. If,

for example, an infectious stress in imposed upon a fasted insulopenic rat
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(Fig. 11), depression of plasma ketones does not occur. Moreover, Foster

et al25 demonstrated that the administration of insulin rapidly caused

a reversal of fasting ketosis. The data presented in Figure 12 show

that the iv injection of 1 unit of insulin into a rat fasted for 24 hrs

caused a rapid drop, within 3 min, in the concentration of ketone

bodies. The depression was transitory and 15 min after insulin

administration, recovery began. By 1 hr postinsulin administration,

plasma ketone body concentration had exceeded the fasted value.

Infectious stress caused not only an increase in plasma insulin

but also a dramatic increase in plasma glucagon (Fig. 13). The magnitude

of the glucagon increase exceeded that of insulin, so that there was a

marked reduction in the I/G ratio (Fig. 14). During prolonged swimming,

plasma insulin values changed little from those of fasted unexercised

rat. If, however, noninfected and infected rats were-compared, swimming

exercise during sepsis diminished the infection-induced increase in

plasma insulin. Plasma glucagon, however, increased due to exercise and

this increase was not diminished during superimposed infection 1 4 (Fig. 15).

When a single injection of glucagon was given to a fed rat (Fig. 16) a

rapid rise in the concentration of plasma glucose, free fatty acids and

ketones could be detected in minutes. Following the glucagon-induced

rise in these plasma parameters, there was a rapid rise in plasma

insulin, which was followed immediately by a drop in ketones, free fatty

acids and glucose. Data such as these tend to demonstrate that although

glucagon is ketogenic, its effect is rapidly overwhelmed and reversed by

insulin. Thus, the altered I/C ratio in infection caused both by an

increased insulin and a much larger increase in glucagon would tend to

support the theory of the predominant role for insulin in the impaired

ketogenesis seen in the rat during infection.
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When thyroidectomized or adrenalectomized rats are infected, the

ketone response is comparable to that seen in the infected intact rat.

Data such as these suggest that the thyroid gland, the adrenal cortex

and the adrenal medulla are not involved in the infection-induced

diminished plasma ketone body concentration (Fig. 17). When, however,

hypophysectomized rats were inoculated with S. pneumoniae and fasted,

there was no inhibition of the fasting-induced concentration of plasma

18
ketone bodies or free fatty acids (Fig. 19). Additionally, the

concentration of plasma insulin in the fasted and the fasted infected

hypophysectomized rat was so low that often it was below the limits of

24
the assay. This observation supports further the reciprocal relationship

of insulin values and ketone response in infected rats.

E. The effect of inflammatory stress on malonvl-CoA, carnitine

derivatives, and mitochondrial oxidation of free fatty acids.

Pace et a119 showed that bacterial infections caused no change in

the oxidation of palmitylcarnitine by rat liver mitochondria, suggesting

that the process of B-oxidation, and the tricarboxylic acid cycle were

not altered in infected rats. There were, however, alterations in

carnitine derivatives as shown in Table I. Infection caused a marked

increase in the concentration of short-chain acylcarnitines, especially

acetylcarnitine, and a marked decrease in long-chain acylcarnitines.
1 9

The total carnitine (free plus short-chain plus long-chain acylcarnitine)

increased with infection when compared to the fasted uninfected control.

Fasting and/or infection caused a significant decrease in the content of

malonyl-CoA.

Moreover, there is a characteristic deposition of lipid droplets

19in the cytosol of livers from infected rats. These data, together
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with the changes in the carnitine derivatives, suggest that inflammatory

stress may cause a change in the metabolic pathways of hepatic cells,

away from ketone formation, and toward fatty acid and triglyceride

synthesis. If, indeed, this is so, this may represent a fatty acid futile

cycle in that fatty acids mobilized from triglycerides in the adipose

tissue end up as triglyceride droplets in liver cytosol.

F. Interpretation: The rat

The metabolic variations that result from an infectious stress in

the rat are apparent in general noninfectious inflammatory stresses as

well. The inflammatory stresses studied precipitate several important

parametric variations, namely: fever, plasma zinc depression, inhibition

of fasting ketosis, depression of plasma free fatty acids and elevation

of plasma insulin, glucagon, and copper. These changes occur in different

time sequences, depending on the severity and acuteness of the particular

stress and, if low-dose inocula of bacteria are given, and the incubation

period is lengthened, the changes simply occur later.

The changes in the metabolic parameters which have been discussed

are so general that it is highly probable that in all the infectious and

noninfectious inflammatory stresses studied common mechanisms are called

into play. Pekarek and his colleagues 2 6 have demonstrated that an

inflammatory stress caused the production of a factor they called

leukocytic endogenous mediator (LEN). LEM isolated in crude form from

leukocytes stimulated by glycogen granules in the peritoneal cavity of

the rabbit have been demonstrated to cause many of the parametric

variations caused by infectiou -cress.

It would be tempting to suggest that LEM might be the common

factor. However, careful analysis of the data suggests that at least
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two, and probably more, mechanisms are called into play. For example,

although crude LEM injected into rats causes fever and depressed plasma

zinc and ketones, it cannot be the sole responsible agent. Neufeld

et al24 have shown that when hypophysectomized rats are infected,

only plasma zinc is depressed -- ketone body responses appear to be

unaffected. A better approach is to postulate that the inflammatory

stress sets into motion a number of responses; one causing elevated

insulin and depressed ketones and involving the hypophysis and the

pancreas; a second, involving depression of plasma zinc; a third,

concerned with fever; and others such as acute-phase protein synthesis

and neutrophil mobilization, not covered in this review.

The net result, in the rat, is that there is an altered ability

of the rat to use fatty acids for fuel during infectious stress. Ketone

production is severely inhibited and some fatty acids seem to be

redeposited in liver cytosol as triglycerides.

G. Interpretation: Primates

While data from any animal and, in particular, the rat can be

transferred to the human situation only with great care, there is some

evidence that the effect of infectious stress described here may be

common to the primate. In the rat as well as the human, fasting causes,

after a suitable time period, a rise in plasma ketone bodies and, in

both species, uncontrolled diabetes results in ketoacidosis. The exact

conditions described in this review for the rat cannot be obtained for

the human, since a human patient would not purposefully be deprived of

nutritional support. However, it is not unreasonable to theorize that

some similar train of events takes place.

Two of the most consistent observations from experiments with the

rat stressed with infectious or noninfectious inflammatory stresses

L ' . , .. 77 . .
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were the rise in plasma insulin and glucagon. The rise in plasma

glucagon was of a larger magnitude than the rise in insulin resulting

in a decreased I/C ratio. Similar observations have been noted

during infectious stress in primates. Shambaugh and Beisel27 noted

that experimentally induced tularemia in man resulted in a significant

increase in plasma insulin. Rayfield et al22 found normal fasting

baseline plasma values for both insulin and glucagon during sandfly

fever in volunteers, but insulin responses to an infused glucose load

were significantly increased. George et al23 described elevated

plasma insulin and glucagon concentrations in monkeys infected with

S. pneumoniae. They noted, also, a decrease in the insulin/glucagon

ratio and suggested that this decrease was indicative of a catabolic

state. A similar proposal was made by Unger in 197228 and by Muller

et al29 in 1971.

In 1975, Sherwin, et al30 demonstrated in both nonobese and obese

human subjects that iv infusion of -hydroxybutyrate during starvation

resulted in hypoalaninemia and decreased protein catabolism. Also, in

1975, Bistrian and associates3 1 presented data which indicated that

provision of carbohydrate-containing diets during stress was the cause

of the higher than normal insulin concentrations resulting in the inhibition

of lipolysis and ketogenesis. O'Donnel and associates in 1976,32

demonstrated in seriously ill, septic patients elevated insulin and

markedly decreased values of ketone bodies in blood obtained from the

femoral artery. They proposed that this combination resulted from

enhanced gluconeo-genesis together with an enhanced release of alanine

and extensive proteolysis. They suggested that body cell mass could be

conserved optimally in septic states b meeting an obligatory keto acid

(derived from ketone bodies or branched-chain amino acids) energy 33
requirement. This proposition is supported by data obtained by Sapier.INI
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Other marked alterations in lipid metabolism during infection in

primates have been noted by Kaufmann et a134' and by Fiser et al. 36

Fiser et al showed that in the monkey, experimentally induced endotoxemia

resulted in an increase in plasma triglycerides, which glucose

administration could partially prevent; they noted a 40-50% decrease in

plasma free fatty acid -- similarly shown for endotoxemia in the rat.

Kaufman et al studied the role of Salmonella tvphimurium endotoxin on

lipid disposal mechanisms in rhesus monkeys. They demonstrated an

increase in plasma free fatty acids shortly after administration of

endotoxin, but this study was not carried beyond 8 hrs. Of greater

significance was the marked hypertriglyceridemia which occurred 4-6 hrs

after endotoxin administration. Administration of Intralipid markedly

increased hypertriglyceridemia. Work by Siegel, Cerra and their
37, 38

associates on a number of metabolic parameters tin septic patients

led to some interesting observations. In six septic patients who died,

the metabolic state was characterized by an elevation of glucose, lactate,

aromatic and branch-chain amino acids and glucagon, and by low values of
37 38

ketone bodies. In other studies, however, these authors observed

slight rises in ketone bodies, particularly acetoacetate, resulting in

an altered cellular redox potential.

In a study with monkeys infected with S. pneumoniae, Wannemacher

et a139, 40 demonstrated a marked drop in urinary 5-hydroxbutyric acid

which was closely correlated with negative nitrogen balance. This

negative balance could be overcome by infusion with amino acids plus
15

dextrose. In a detailed study in rats by Wannemacher et al, it was

shown that sepsis caused a reduction in plasma free fatty acids; this

could be explained as a consequence of an infection-induced decrease in

* .-.- •s"



14

plasma albumin which is the fatty acid 
carrier. They also demonstrated

that ketone body oxidation was not affected or reduced in peripheral

19
tissues of the infected rat. According to the authors, the reduced

rate of ketone body production was due to the tendency of the liver in

the infected rat to shuttle fatty acids away from B-oxidation and

ketogenesis towards triglyceride production and deposition in the liver

cell -- the so-called futile cycle discussed earlier.

More recently Wannemacher et a140 reported experiments in which

butanediol and monacetoacetin were used as ketone precursors in septic

monkeys. They found that butanediol was not only ineffective, but

could be lethal. On the other hand, monoacetoacetin and a mixture of

long-chain fatty acids and branched-chain amino acids were effective in

preventing nitrogen wastage with few side effects.

All of these data tend to support the theory that the altered

metabolic state reported for the rat during sepsis resembles closely the

altered state seen in primates. Data such as these suggest that the

proper mixture of nutrients can prevent or :minimize the nitrogen wastage

which usually accompanies sepsis. The major thrust of such nutritional

support is in the direction of reducing gluconeogenesis from body protein

and stimulating the use of ketone bodies or adequate precursors as high

caloric substrates.
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FIGURE LEGENDS

Fig. 1: Effect of inflammatory stress on body temperature. All rats

were fasted for 24 hrs and then infected or inoculated.

Fig. 2: Effect of inflammatory stress on plasma zinc and plasma copper.

( [3 ) Fed, ( El ) Fasted, ( M ) Fasted and infected with 104 cells of S.

pneumoniae/rat: zinc and copper were measured 24 hrs after infection.

Fig. 3: Effect of inflammatory and noninflammatory stress on plasma

ketone body concentration. Ketone bodies were measured 48 hrs after

imposition of the stress.

Fig. 4: Effect of inflammatory stress on plasma free fatty acids

in the 48-hr fasted rat.

Fig. 5: Influence of a 48-hr S. pneumoniae infection (10 2/rat) and 2-hr

swim on plasma ketones and free fatty acids in the rat. ( 0 ) Sedentary

fasted, ( ) Sedentary-fasted-infected, ( [ ) Exercise fasted,

( U ) Exercise-fasted-infected.

Fig. 6: Effect of S. pneumoniae infection on ketone body concentration

in the rat brain and liver. C 0 ) 104 S. pneumoniae, sc,

( 0 ) 104 heat-killed S pneumoniae, sc.

Fig. ~: Effect of infection on ketone formation in perfused livers.

Fig. 8: Effect of fasting and infection on the free fatty acid/albumin

ratio in the plasma of rats.
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Fig. 9: Effect of noninflammatory stress on plasma free fatty acids.

( 0 ) controls, ( 0 ) Femoral fracture, ( 0 ) Screen restraint.

Fig. 10: Effect of inflammatory and infectious stress on plasma insulin.

Values are at the time of maximum insulin elevation.

Fig. 11: Effect of infection on plasma ketones in diabetic rats. ( 0 )

Fed rats and rats which received no insulin after iniection of heat-killed

organism. ( S ) Fasted rats infected with S. pneumoniae which received no

insulin. C ] ) Fasted-control rats which received 2 U insulin. ( U )

Fasted-infected rats which received 2 U insulin.

Fig. 12: Effect of insulin on the ketosis of fasting.

Fig. 13: Effect of infection (104 S. pneumoniae) on plasma glucagon. ( 0 )

104 viable S. pneumoniae, sc, ( 0 ) 104 heat-killed S. pneumoniae, sc.

Fig. 14 : Effect of infection on the molar I/G ratio.

Fig. 15: The effect of exercise on plasma insulin and glucagon in infected

rats. ( C] ) Sedentary-fasted, ( C ) Exercised-fasted, ( [ ) Sedentary-

fasted-infected, ( • ) Exercised-fasted-infected.

Fig. 16: Effect of a bolus of glucagon on plasma glucagon, insulin,

ketone bodies, free fatty acids and glucose.

Fig. 17: Effect of thyroidectomy and adrenalectomy on ketone body

formation in the inflamed state.

- --- ~z.---
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Fig. 18: Effect of infection on hypophysectomized rats and control rats

on plasma ketone bodies.

Fig. 19: Effect of infection on hypophysectomized rats and control rats

on plasma free fatty acids.
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